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Abst rac t  Xkj 

This paper reviews the mathematical basis of maximum 
likelihood. The likelihood function for macromolecular BkJ 
structures is extended to include prior phase information 
and experimental standard uncertainties. The assump- Axj 
tion that different parts of a structure might have 
different errors is considered. A method for estimating ABj 
er A using ' free '  reflections is described and its effects 
analysed. The derived equations have been implemented Dj(s) 
in the program REFMAC. This has been tested on Fw c 
several proteins at different stages of refinement 
(bacterial a-amylase,  cytochrome c', cross-linked 
insulin and oligopeptide binding protein). The results 
derived using the maximum-likelihood residual are 
consistently better than those obtained from least- 
squares refinement. 
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1. Notations 

Experimental and calculated intensities 
of the structure factor for reflection h. 
The subscript h will usually be omitted. 
Experimental amplitude of the structure 
factor cra:wc 
Experimental uncertainty in intensity A~0 
OrlFl:ex p.  Experimental uncertainty in amp- m 
litude of structure factor 
Vector of position in reciprocal space 
2 sin 0/2 
Multiplicity of diffracting plane 
Number of partial structures. May be X 
different subsets of atoms; for example 
protein atoms, H atoms, metals, or be 
derived from unparameterized electron 
density, such as the solvent continuum or 
a segment of poorly phased elec- 
tron density which cannot be interpreted 
as an atomic model. 
(af, By) = IFfl exp i~of. Calculated struc- 
ture factor from jth partial structure. MAD 
When Npa,, -- 1, the subscript j will be 
dropped. 
Number of atoms in j th partial structure 
Normalized partial calculated structure 
factor 
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lo(X ) and 
l~(X) 
MIR 

P(A . . . .  • 
B . . . .  ) 

P(A) 

Vector of coordinates of kth atom of jth 
partial structure 
B value of kth atom of j th partial struc- 
ture 
Error in position of atoms in j th partial 
structure 
Error in B values of atoms in j th partial 
structure 
Oj = (exp [-(ABjlsl 2/4)1 cos 2rcsAxj) 
3-~j~¢0~, OjFf = (awe, nwc) = IFwcl exp i~0wc, =1 

weighted sum of partial calculated struc- 
ture factors 
Form factor of kth atom 

E Natom ,"2- - 
k=t J~ Ls) 

--N~atom 2 ~-'~j(s)=)___~k~l fiZj(s) for j th partial struc- 
ture 

~-,Gart 
E Z..aj=l E j ( I  - -D~j)  

~-~4 Npa~t cra:jE f ,  weighted sum of norm- =1 aa  

alized structure factors 
e(1 X-'G,- 2 - z..,j=] aj:j) 
Phase error of current model. 
((cos ~o) 2 + (sin ~o)2) 1/2. Figure of merit of 
phases. In case of the uniform prior 
phase information m = (cos A~o) = 
Io(X)/It(X ) or tanh(X) for acentric 
and centric reflections, respectively. 
2[E°llEwcl/(2~2eo + era:we ) for acentric 
reflections 
IE°llEwcl/(a2o+aa:wc) for centric ref- 
lections 
Zero and first-order modified Bessel 
functions of the first kind. 
Multiple isomorphous replacement phas- 
ing 
Multiple-wavelength anomalous disper- 
sion phasing 
Conditional probability distribution of 
(A . . . .  ) when (B . . . .  ) are known 
fB P(A, B)dB, marginal probability dis- 
tribution of A. 
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For independent experimental observations (A . . . .  ) and 
parameters (B . . . .  ) to be estimated using these, the log- 
likelihood function, LLK, is 

LLK = ~ log P(A . . . .  ; B . . . .  ) 

The maximum-likelihood estimation of parameters 
(B . . . .  ) is achieved by minimization of this function. 
If P(A . . . .  ;B . . . .  ) is the conditional probability dis- 
tribution of the amplitude of the structure factor then 
LLK will be the amplitude-based maximum-likelihood 
(MLKF) residual. 

If, 

P(A . . . .  ;B . . . .  ) = cexp-{[A - T(B  . . . .  )]2/o2}, 

i.e. P(A; B . . . .  ) is the Gaussian distribution of A with 
expected value T(B  . . . .  ) and known uncertainties or, 
then the log-likelihood is the least-squares residual, 

LSQ = LLK = )-~[A- T(B  . . . .  ) ] 2 /O '2 .  

If A are amplitudes of structure factors, B are 
parameters of atoms and T are amplitudes of calculated 
structure factors, LSQ is the amplitude-based least- 
squares residual (FLSQ). If A are intensities and T are 
calculated intensities of structure factors then 
LSQ is the intensity-based least-squares residual 
(ILSQ). w = 1 / a  2 is the weight for LSQ. 

2. Introduction and historical survey 

Crystallographers appreciated by the 1940's that the 
parameters they determined for the positions of atoms 
within a crystal could be improved by minimizing the 
differences between the observed amplitudes, IF°I, and 
the IFI calculated from those atomic parameters. 

One of the first papers on the application of least- 
squares residuals to crystal structure refinement was 
written by Hughes (1941). Another approach to 
structural analysis - the difference Fourier method 
where corrections to atomic parameters were made in 
real space on the basis of the difference map at the 
atomic positions - was developed by Booth (1946, 
1947). Cochran (1948) showed the similarity of these 
two approaches by comparing the first derivatives of the 
two functions. Cruickshank (1952, 1956) completed this 
comparative analysis and gave equations for the 
derivative calculation for atomic x~ and B~ for LSQ 
and modified Fourier methods. 

Cruickshank (1952) also showed that in the final 
stages of a structure analysis, least-squares refinement 
against unweighted amplitudes (FLSQ) and against 
intensities (ILSQ) weighted by w =  1/IF°l 2, are 
approximately the same. Wilson (1976) showed that in 
the theoretical case where only one parameter is to be 
estimated using ILSQ, then modifying the weights, w, 
as a function of (I ° + 21") will reduce refinement bias. 
He suggested using this type of weighting in the final 

stages. Sheldrick (1995) uses ILSQ routinely for 
refining structures at high resolution, weighting each 
term with w = 1/[Cr2o + a ( l  ° + 21 c) + b ( l  ° + 21c)2]. 
Intensity-based refinement has some great advantages. 
Firstly, it is easy to use all observations whether they 
are strong, weak or even negative. Unlike amplitude- 
based least-squares ILSQ does not have a singularity 
when F c = 0. Secondly, it is easier to estimate o7° from 
the experiment than crFo. Its principal disadvantages are 
firstly, when the initial model is far from the desired one 
and the residual is very high, minimization of the least- 
squares residual may not work well; secondly, ILSQ 
may work poorly when the model is incomplete; 
thirdly, adding several partial structures and refining 
different global parameters simultaneously may not be 
easy; and fourthly, adding prior phase information is 
very difficult. 

Before using amplitude-based refinement it is 
necessary to address carefully two problems; that of 
estimating O'ro from O'to, and that of assigning values to 
very small IF°I. French & Wilson (1978) gave a 
reasonable method for estimating them based on 
expected distributions of weak amplitudes but such 
reflections must be used with care. 

It was recognised in the 1960's that macromolecular 
refinement posed special problems. There were too few 
observations to refine the atomic parameters using least- 
squares minimization alone, and the calculation of the 
structure factors and derivatives from such a large 
number of coordinates challenged the computing 
resources available. Macromolecular refinement was 
first attempted using the real-space refinement program 
written by Diamond (1971). Atomic coordinates were 
fitted to a map, which could be generated from any 
available set of phases, experimental or calculated. 
Geometric constraints expressed as torsion angles were 
applied while building the model. This approach to 
refinement has advantages. Parts of a structure could be 
refined independently; and adding phase information is 
straightforward since this is used in the map calculation. 
This approach has been successfully used in different 
contexts by Jones, Zou, Cowan & Kjeldgaard (1991); 
Lamzin & Wilson (1993); Chapman (1995) and Oldfield 
(1996). Its disadvantages are that it depends on the 
quality of phases which may be poor; that weighting 
individual reflections is not straightforward; that maps 
using calculated phases almost always suffer from 
model bias; and that it is hard to combine derivatives 
from the map and from geometric parameters, and to 
weight the different classes of information. 

[For reviews on refinement and a more complete 
set of references see Bricogne (1993); Watkin 
(1994).] 

The basic assumption in least-squares minimization is 
that the conditional distribution of each IF°[ or I ° when 
the model is known is Gaussian with expected value IFCl 
or I C and known uncertainties. Beginning with Luzzati 
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(1952) it was shown by various authors that this 
assumption breaks down (Srinivasan & Ramachandran 
1965; Read, 1990). Statistical theory shows that it is 
better to use maximum likelihood rather than least- 
squares to optimize the fit between observed and 
calculated quantities (Stuart & Ord, 1991). Maximum 
likelihood does not assume a Gaussian error distribution 
and instead estimates the conditional distribution of 
experimental data when the model is known. Luzzati 
showed that with the assumption that all errors are a 
consequence of coordinate errors, Ax, and that 
(cos(2rrszax)) and ([cos(2zrsAx)] 2) [i.e. the first and 
second moments of cos(2zrsAx)] are the same for all 
atoms, then the conditional distribution of the structure 
factors themselves is Gaussian but not that of the 
amplitudes. The resulting marginal distribution of 
amplitudes of structure factors was given by Srinivasan 
& Ramachandran (1965). Later Bricogne (1988) noted 
that this distribution was used by other authors, the first 
being Rice (1954). Luzzati's results were extended by 
Read (1990) to include the assumption that there are 
errors in the atomic scattering factors which can be 
assigned to AB. 

Recent interest in using these equations for refine- 
ment of macromolecular structures has been stimulated 
by their successful application in reducing model bias in 
map calculations (Lunin & Urzhumtsev, 1984; Read, 
1986); by the theoretical results described by Bricogne 
(Bricogne, 1988) for their application with maximum 
entropy as a general tool in phase determination; by 
their successful application of his results in phase 
improvement (Carter, Crumley, Coleman, Hage & 
Bricogne, 1990); and by the increasing power of 
computers. The procedure described here is referred 
to as 'maximum-likelihood refinement' since all pre- 
vious macromolecular refinement procedures are 
referred to as 'least-squares refinement' despite the 
fact that all these also utilize prior information. 

As mentioned above the ratio of the number of 
experimental data to the number of parameters to be 
estimated is small. It is essential to use prior chemical or 
other information. This means that all macromolecular 
refinement can be seen as applications of Bayes' 
theorem. [For details of this, and of its application see 
Box & Tiao (1973).] 

Assuming there are experimental data IFI and 
parameters to be estimated x, then Bayes' theorem can 
be written as, 

P(x; IFI) = p(x)P(IFI; x)/P(IFI) -- p(x)L(x; IFI). (1) 

Here, P is the posterior probability distribution of the 
parameters when the experimental data are known; x is 
the parameter to be estimated; p is the prior probability 
distribution of parameters known before the experi- 
ment. It reflects the prior knowledge of the experi- 
menter; L is "the likelihood function which is 

proportional to the conditional distribution of experi- 
mental data when the parameters are known. 

To best estimate the parameters x the posterior must 
be forced to reach its maximum. To apply this theorem 
the form of the prior and likelihood is needed. 

In this paper for convenience we refer to P(IFI; F C) 
and L(FC; IFI) instead of P(IFI; x) and L(x; IFI) since U 
is directly calculated from the x. 

2.1. Prior knowledge 

In principle, prior knowledge might contain informa- 
tion about bond lengths, bond angles, torsion angles etc. 
Two different methods of using this prior knowledge are 
well established. One of these methods is to express it as 
stereochemical restraints (Waser, 1963; Konnert, 1976) 
and another is to express it as energetic restraints 
(Levitt, 1974). The first idea has been incorporated into 
the various versions of PROLSQ (Konnert & Hendrick- 
son, 1980), FROG (Lunin & Urzhumtsev, 1985), TNT 
(Tronrud, Ten Eyck & Matthews, 1987), RESTRAINT 
(Driessen et al., 1989) and SHELXL (Sheldrick, 1995). 
The energy approach has been implemented in pro- 
grams such as EREF (Jack & Levitt, 1978) and X-PLOR 
(Briinger, 1992). The examples described here incor- 
porate the prior knowledge as stereochemical restraints. 

2.2. Likelihood 

Since likelihood is proportional to the conditional 
probability distribution of experimental data when the 
model is known, the form of this conditional probability 
distribution is needed. The best way would be to find the 
joint probability distribution of all structure factors. 
However, this task is not trivial and its implementation 
requires a large amount of computer memory and time. 
All existing refinement procedures assume that the 
errors in different reflections are independent, and this 
simplification still allows useful results to be obtained. 

With this assumption, the required joint probability 
distribution of all amplitudes of structure factors has the 
form, 

p[(iF~l)an reflections (F/~)all reflections] 

= 1-I P(OF~'i; F~,). 
all reflections 

(2) 

Thus, to describe the likelihood function, the condi- 
tional probability distribution of each reflection is 
generated and these are multiplied together to give the 
joint conditional probability distribution. 

2.3. Posterior distribution 

Since maximization of a function is equivalent to the 
minimization of its negative logarithm, (1) is equivalent 
to, 
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- log P[x; (lEVI) au reflections] __ 

- logp(/) - ~ logL(F~,; lEVI), 
all reflections 

(3) 

where L(F~,;IF~I) ocP(IF~I;Ff,). - l o g p ( x )  can be 
written in a straightforward way from the stereochemi- 
cal information, so only the second term needs to be 
considered. 

3. Conditional distribution of structure-factor 
amplitudes split into separate components 

Suppose the structure factors of interest are the sum of 
ideal structure factors derived from perfectly ordered 
atoms with an error, 

gpart 
F = ~'~ Fj + experimentalerr, (4) 

j=l 

where 

NaJtom 
Fj = ~_, fkj(s)exp--[(BkjlslZ)/4]exp(2zrisxk) • (5) 

k=l 

Now suppose xkj and Bkj have approximate values ~ 
and Bf.. 

If t~e errors in different atoms are independent and 
distributed with the same probability distribution 
{equality of the first and second moments of 
exp[(-ABlsl2) /4]  cos(2zrsAx) is required}, then 
according to Luzzati (1952) and Read (1990) we can 
write, 

P(FJ; Ff) 

exp - )zr~ ~ j ( i - ~ )  [~ ~ j ( i -  P~j)J acentric 

= /  1 [ IFJp - DjFf l 2 1 

(6) 

Suppose the distribution of experimental errors around 
F ° is normal with mean zero and variance a~o, with 
errors distributed over two dimensions for acentric 
reflections and along one dimension for centric reflec- 
tions.* The sum of independent random normally 
distributed variables will also be normally distributed 
with a mean equal to the sum of means and a variance 
equal to the sum of variances. Assuming that Fj 's are 
independent of each other and of the experimental 
errors, and using notations Fwc = ~ ] ~ D j F j  c and 
~wc - - 8  ~--~N__p]rt Ej(1 -- D~j), 

* This assumption makes the addition of experimental uncertainties 
into the probability distribution straightforward. For a more elaborate 
treatment of experimental uncertainties in probability distributions see 
Pannu & Read (1996). Test cases show that this simple approach is 
helpful. 

1 ( I F °  _~Fwcl2~ 

~(2o~o + Zwe)exp-- \2~o + ~wc/ 
= 1 e x p _  [ IF° -- Fwcl2 .] 

[2zr(a2o + Ew~)] 1/2 L2(ogo + Xwc).l 

acentric 

centric. 

(7) 

This implies that the distribution of a hypothetical 
vector of experimental error is normal. Bricogne & 
Gilmore (1990) suggested a similar way of adding aFO. 
It is expected that the effect of experimental error will 
be considerable when its contribution is comparable to 
that from coordinate errors, and in that case the 
assumption that this hypothetical vector of experimental 
error is distributed by the normal law may not be 
justified. If there are many observations where l°/ato is 
small it may be better to use an intensity-based residual, 
either ILSQ or intensity-based maximum likelihood.* It 
is more reasonable to assume a Gaussian distribution of 
experimental errors for weak intensities than for weak 
amplitudes (Pannu & Read, 1996). 

Splitting the error terms for F c and writing Ewe as a 
sum is convenient and reflects the different types of 
structure factors and errors. Different parts of a 
structure may need different treatments. For example 
only one domain of a structure may obey NCS. Another 
example is when a partial model has been built into an 
experimentally phased map. Often the remainder of the 
map is not clear enough to interpret, but it can generate 
a useful contribution to the calculated structure factor. 

So far we have assumed that both amplitudes and 
phases of F ° are known. In reality this is usually not so, 
as only amplitudes can be measured. Hence, we require 
the distribution of the amplitudes rather than the 
structure factors (for centrosymmetric reflections the 
integral should be replaced by summation over the two 
possible values of the phase). 

e[lFi o, ¢po; (FjC)j=l,N0ar,] = 

2. (8) 
f e(~oo; ~o)P[IFOl, ~0; (UY=t'NParqd~0, 
o 

where P(~o°; (p) is distribution of experimental phases. 
[In the following discussions we will shorten p(cpo; ~o) to 
POP).] (7) and (8) give the following distribution [as the 
Jacobian of the transformation from (A, B) to (IFI, ¢P) is 
equal to IFI], 

Some special cases of (9) are of interest. Suppose the 
exact phases of the structure factors were known. Then 
(9) would have the form, 

* In any case the distribution of the experimental erros is only 
approximately Gaussian, and this begins to break down for small 
Plato. The distribution of the amplitudes of structure factors is 
derived from that of intensities by a further approximation (French & 
Wilson, 1978). 
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P[IF°I;  (6c)j=I'Np an] _~ 

IF°[ exp ( IF°12 +- ]Fw~[2'~ 2.f P(~o)exp [ (  21F°JlFwcl'~ cos(~o- ~Owc)] d~p 
:r(2cr2o + Xwc) - k  24°  + Xwc J o k24o + XwcJ 

acentric 

[2 ,4o ] l,= ,=0 r  wc,] + Zwc)] exp -L2-~o  $ z-~OJ ~ P(c;°3exp [kO2o + EwcJ COS(qg/- 
centric. 

(9) 

P[IF°I" (Fwc)] 
iOl ~ 2 ( F f l F - F ~ c l  

)}(2cr2-7-- ~ Zwc)exp- k2o..2 ° +Ewc)  
= 1 ]/2 2 /r l r I F -  Fw~l l 

t L ~  7+Y~wLjJ exp - L25~o ¥ Y-wcJJ 

acentric 

centric, 

(10) 

where F = IF°I exp(@°). 
This assumption is usually unrealistic. Phases can be 

Sim's distribution (1959) is a special case of this: he 
assumed the partial structure was correct and the only 
error was due to the missing atoms, i.e. D - - 1  and 
~wc : Eq. Wilson's distribution (1949) is a special 
case too: there it is assumed that no atomic parameters 
are known, and that the contents of the unit cell are 
distributed uniformly. So Fw¢--0, I0(0)= 1 and 
~,wc = ~U" 

Finally the log likelihood from (11) will have the 
form, 

e [ I F ° l ;  (6c) j=l'Npan] = { 
21F°l exp ( ]F°12 +JFwcl2"~ ( 21F°-[LFwcl "~ 

20"20 + Ewc -k ,  2O2o + Ewc Jt°k,2Cr2o + EwcJ 

[rr(Cr2o 2 []F°I2 + IFwcl 2] ( IF°llFwcl. "] 
+ r~w~)] e x p -  L2-~eo ~--X-~w0j c°sh ktr2 ° + Ewc,} 

acentric 

centric. 

(11) 

estimated with high accuracy for structures with rich 
NCS, such as viruses, and Burling, Weis, Flaherty & 
Brfinger (1996) describe a MAD experiment which 
yielded very accurate phase information for many of the 
F °. In such cases the phases could be used as observables. 
A more common situation is when there is no prior phase 
information available. Then (9) will become the familiar 
Rice distribution (see Bricogne, 1988; Rice, 1954), 

This equation is the most popular one from the 
family of distributions given by (9). In crystal- 
lography a special case of this equation was first 
derived by Srinivasan & Ramachandran (1965). They 
also gave a normalized version of it which was later 
applied to reduce bias in map calculation by Read 
(1986). 

Some special cases of (11) are interesting. If some 
atomic parameters are approximately known and it is 
assumed that the missing atoms are distributed 
uniformly over the asymmetric unit, then Npart : 2, 
D] = D, D 2 = 0, El : )-']p' ~"]2 -- Eq and F~ = Fp 
where p denotes the partial structure and q denotes the 
missing part of the structure. This gives Srinivasan & 
Ramachandran's distribution which neglects experi- 
mental errors, 

~']wc : ~']q + ~p(1 -- 19 2) 

Fwc = Dr;,. 
(12) 

where, 

LLK = ~ LLK h, 
h 

(13) 

LLK h = 

ca - log(IF°l) + log(2cr2o + Ewe) 

+ IF°12 + IFwcl2 - l o g / 0 (  21F°llFwcl 
20"20 + Ewe k,2cr2ro + Ewe,,} 

cc + ½ log(oh + %c) 
ipol + ipwcl [ Ir°!Lewcl ] 

+ 2(0"20 + Zwc) - l o g c o s h  k(4o + Zwc)] 

acentric 

centric. 

(14) 

When there is some prior phase information the LLK 
is derived from (9). 

4. Relationship between log-likelihood and 
least-squares residuals 

Bricogne (1992), using Taylor's expansion of lo(t ) and 
cosh(t) around t - 0, showed that when 
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X(= 21F°llFwcl/Xwc) is small (either because Ewc is 
large or the IFl's are small) the log-likelihood residual 
is similar to the normalized intensity-based Patterson 
correlation function (which is related to normalized 
intensity-based least squares). Here, we give the 
assumption under which the LLK and FLSQ residuals 
are similar. Assume that X=21F°llFwcl/(2a2 o + Ewc ) 
for acentric and IF°l IFwcl/(a2o + Ewe) for centric terms. 
When X is large lo(X ) and cosh(X) have this asymptotic 
behaviour, 

1 
/ 0 ( X )  '~" (27/.X)1/2 exp X 

logX 
log[lo(X)] _~ c - -  + X, 

2 
cosh(X) "~ i exp X 

log[cosh(X)] _~ c + X. (15) 

It can be shown that (ignoring constants), 

LLK h 

(IFOl- IFwcl) 2 
+ ½1og(202o + Ewc) 

2a2o + Ewe 

- ½ log IF°l acentric 
IFwcl 

( I F ° l -  IFwcl) 2 
+ ½ log(a2o + Ewc) centric. 

2(a2ro + Ewe) 
(16) 

Note, a similar approximation, although in a different 
context, was given by Rice (1954). 

Assuming that IF°I ~_ IFwcl so that log(IF°l/IFwcl) is 
small, the above equation is similar to FLSQ, the 
Gaussian-based likelihood function. This assumption is 
reasonable near the end of refinement. If all reflections 
are measured with equal aFO (a very unreal assumption) 
and all Dj _~ 1 then the above equation will become the 
unit-weighted LSQ residual. 

The similarity between the LLK and FLSQ residuals 
can also be derived from (10), with the assumption that 
the phases of the calculated structure factors are always 
equal to the true phase. 

5. Parameters of the likelihood function 

In the applications of MLKF described here the overall 
parameters of likelihood and the atomic parameters are 
refined sequentially. We use the normalized version of 

~"~Npart 0 .2 and (11) and deduce aA:wc where o'a:wc = 1 - z . . , , j = l  A;j X-,G~r, Ewc--z..aj=l °A;jgj. The normalization is done in 
resolution bins. 

PIlE°I; (Ef)J=LNo ~'] 

(IE°12 + lEwcl2~ 
21E°I exp - \. 2-~e ° + - - -  

2a2o + O'A:wc (YA:wc .] 

x I 0 L(2o.~.o + aa:wc)J 

2 e x p -  [ IE°l= + IEwcl2] 

+  .wc) + 

x cosh \o.2, ' + aa:wc j 

acentric 

centric. 

(17) 

Read (1986) uses this equation in his program SIGMAA. 
He estimates the a A parameters in reciprocal-space 
resolution shells, where each shell includes several 
hundred reflections. 

Another way of representing aa; j is to express them as 
some function of resolution. Crystallographers are used 
to expressing overall scale factors in this way. The one 
Gaussian overall scale approximation k exp( -B l s l  2) 
suggested by A. J. Wilson gives reasonable agreement 
between IF°I and IFCl for macromolecular structures at 
high resolution but not for low-resolution terms. To 
improve this fit Tronrud (1997) suggested using a two 
Gaussian approximation for the scale factor invoking 
the Babinet principle. Assuming that the contribution of 
the solvent and protein parts of the crystal to the 
structure factors are negatively correlated he showed 
that a scale derived from the following equation gives 
reasonable agreement between IF°l and IFCl for all 
resolution ranges, 

k = k o exp(-Bolsl2/4)[1 - k 1 exp( -B  llsl2/4)]. (18) 

A similar approach can be used for aA.j-S. The following 
expression can be fitted to the data, 

aa: j = aA;j,O exp(-Cj ,  olSl2 /4)[1 - aa:j, 1 exp(-Cj,1 Isl2/4)]. 

(19) 

Thus, to estimate all the aA: j 2Npart + 2 parameters are 
needed. For this a few hundred reflections is enough (in 
one of our test cases we estimated aA'S satisfactorily 
using only 200 reflections). So for the estimation of 
O'A:j'S one could use reflections not included in the 
refinement of the atomic parameters, the 'free' reflec- 
tions (Brfinger, 1992). Care must be taken at this stage 
as the parameters are highly correlated and simulta- 
neous estimation of them can cause problems. A 
singular value decomposition method (Press, Flannery, 
Teukolsky & Vetterling, 1986) to solve the linear 
equations has been used in the examples below. Another 
approach would be to refine the parameters Cj,i's and 
GA:j,i' S consecutively. 
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Table 1. Examples 
BA2 Cytochrome c' Insulin OppA 

Space group C2221 P6s22 P21 P212121 
Cell dimensions 52.5, 77.7, 238.2 54.5, 54.5, 181.0 53.9, 64.8, 48.9 109.2, 76.0, 70.3 

(,~,, °) 90, 90, 90 90, 90, 120 90, 109.8, 90 90, 90, 90 
Resolution ~ )  2.2 2.0 1.9 1.2 
Number of residues 483 125 318 517 
Method of MIR MR MR MAD/averaging 

solution good model poor homology good homology good model 
Completeness 85 % of protein 25 % homology All protein and 

of the model no waters 10 residues misfitted 20% of waters 100% 
Final 

R value/R free (%) 11.9/20.9 16.7/NA 18.4/25.2 16/18 

6. Examples of application 

The maximum-likelihood equations have been imple- 
mented in the program REFMAC now available from 
CCP4 (Collaborative Computational Project, Number 
4, 1994). It has been widely used in a fl-test release, and 
to illustrate its performance results from four structures 
at different stages of refinement are described. In each 
test the MLKF procedure was run automatically from 
some starting point until convergence (i.e. until there 
was no significant increase in the figure of merit, m or 
decrease in the R values between cycles), without any 
manual rebuilding of the structure, and the resultant 
model compared with the final one submitted for 
publication. Details for the examples discussed are 
given in the Table 1. 

In the following discussion m and D are derived from 
a A, A~0 is the phase difference between phases 
calculated from the current and final models, (cos Atp) 
the average cosine phase error which should equal m, 
the estimated figure of merit, at all stages of refinement. 
If a a and, therefore, m are overestimated the likelihood 
function is biased towards accepting the current model. 
Better results were obtained when cr A was estimated 
from the reflections not included in the refinement. R 
values and R free are given for convenient comparison 
with other refinement procedures. They were always 
calculated using the Tronrud scaling technique. 

Another indicator of how successfully a refinement 
procedure is driving the model towards the correct 
solution is the correlation between maps generated from 
the current model and the F c map derived from the final 
coordinates. REFMAC writes out map coefficients 
(mJF°l- DIFI )  and (2mlF°l- DIFCl) using the current 
m and D at the end of each refinement pass, taking care 
to 'restore' unmeasured data. Tronrud (1996) and 
Cowtan (1996) show that absent reflections cause 
unpredictable noise in map calculations which some- 
times may lead to errors in interpretation. Assuming 
that absent reflections are best approximated by their 
expected value (in the case of maximum likelihood 
setting mlF°[ = DIFCl) then the difference contribution 
is zero, and the 2mlF°l- DIF¢[ contribution is DIF[. 
The same approximation is used for the 'free' reflec- 

tions, to avoid biasing the R free and ~r a statistics in any 
way. 

These coefficients are, 

F W T  

= I (2mlF°l- DIFCl)exp(i~Oc) 

I DIFCl exp(i~0c) 

D E L F W T  

if reflection was 
included in refinement 

otherwise 

mlF°l -DIFCl)exp(i~°c) if reflection was 
= included in refinement 

0 otherwise. 
(20) 

These should generate maps which are similar to those 
derived from the SIGMAA program (Read, 1986). Any 
differences will be because of the estimates of m and D 
which in the SIGMAA program are based on all the data 
and can be biased towards the current model, and to the 
effect of 'restoring' the unmeasured and 'free' reflec- 
tions. This will reduce noise but may also introduce 
bias. REFMAC also includes the creo in the derivation of 
these terms which usually leads to improved behaviour. 
In fact in several cases when this has not been so it has 
been shown that the crlo were wrongly estimated during 
data processing. 

We tabulate the correlation for maps with coefficients 
(21/7°1- IFCl), (2mlF°[- DIFCI) where the values of m 
and D are derived by the SIGMAA program from all 
data, and for the (2mlF°l-OlF¢l) coefficients from 
REFMAC, where the values of m and D are derived 
from the 'free' reflections, and unmeasured reflections 
are 'restored'. 

In general MLKF refinement gives more improve- 
ment at high resolution than at low resolution. The 
reason for this is that the fit of the high-resolution 
structure factors depends on the accurate position of 
atoms but the low-resolution data fit depends on large 
movements of structure or a more complete description 
of the model. To improve the fit of the data at low 
resolution the model needs to be rebuilt, or new features 
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Table 2. Map correlat ions  and  statist ics 

m free, estimated figure of merit based on a,4 values fitted to 'free' reflections, m all, estimated figure of merit based on cr A values fitted to all 
reflections. FLSQ, unweighted least-squares refinement using PROTIN/PROLSQ/SFALL implemented in CCP4. MLKF, maximum likelihood 
refinement using REFMAC implemented in CCP4. SigmaA, Coefficients generated using SIGMAA program implemented in CCP4. mapc, map 
correlation between named map, and the F ~ map from the deposited coordinates. 

R value R free (A~0) (cos A~0) m free m all mapc 
(a) BA2. Beginning refinement from MIR model 

Initial 0.47 0.46 56.4 0.44 0.46 0.45 2F ° - U 0.55 
FLSQ 0.30 0.40 409 0.64 -- 0.76 2F ° - F ~ 0.73 

. . . . . .  SigmaA 0.81 
MLKF 0.28 0.35 35.6 0.70 0.69 0.80 Refmac 0.85 

(b) Cytochrome c': when FLSQ fails 

FLSQ 0.31 0.32 41.7 0.62 -- 0.78 2F ° - F c 0.65 
. . . . . .  SigmaA 0.73 

MLKF 0.29 0.38 36.3 0.68 0.69 0.81 Re fmac 0.78 

(c) Cross-linked insulin: FLSQ apparently converged 

FLSQ 0.26 0.32 27.2 0.62 0.80 0.79 2F ° - F c 0.84 
. . . . . .  SigmaA 0.87 

MLKF 0.21 0.26 15.9 0.91 0.81 0.87 Refmac 0.90 

such as waters added. The erratic behaviour of  R factors 
and (cos Aqg) at low resolution may be because of  the 
small number  of  observations in these ranges. 

1 . 0 0 0  ~ 

6.1. Bacter ia l  c~-amylase. Beginning  ref inement  f r o m  
an excel lent  M I R  mode l  

The structure of  BA2 was solved by Brzozowski et al. 

(1997). The initial model  for 80% of the residues had 
been built very carefully into a good MIR map and any 
refinement program could have performed satisfacto- 
rily. 5% of the reflections were reserved for R free 
estimation. This model  was subjected to both FLSQ and 
MLKF refinement. The MLKF results were signifi- 
cantly better, with lower phase error and also R value 
and R free. The overall  m estimated from the ' f ree '  
reflections remained very close to the calculated 
(cos Aqg) throughout the MLKF refinement. 1.000 ~ - -  

The maps generated using the MLKF coefficients 
gave higher map correlations. The m estimated by 0.800 
S I G M A A  from all reflections overest imated the phase 
reliability and hence the S I G M A A  maps were a little less 0.600 
effective at removing model  bias. The map correlations 
and other statistics are tabulated in Table 2. 0.400 

6.2. Cytochrome c'. Prepar ing  to rebui ld  f r o m  a 

molecu lar  rep lacement  solution 

0.800 t 

0.600 ~ 

0.400 i 

0.200 

0.000 
I . . . .  I . . . .  I . . . .  I . . . .  l . . . .  I 

0.000 

The structure was solved by Baker, Anderson,  Dobbs 
& Dodson (1995). This starting model  was based on a 
molecular  replacement  (MR) solution where the model  
used had only 25% homology to cytochrome c'. 
Although a solution was found ten residues had out- 
of-register errors and another ten were completely 
misplaced. In such cases where  an extensive rebuilding 

0.050 0.I00 0.150 0.200 0.250 
(a) 

0.200 

0.000 
- [  I . . . .  I . . . .  I ' ' " ' i . . . .  I . . . .  I 

0.000 0.050 0.100 0.150 0.200 0.250 

(b) 

Fig. 1. Cytochrome c': behaviour of m and real (cos A~0) (a) before 
and (b) after MLKF refinement. Bold lines show estimated m, thin 
lines show the true (cos Atp). 
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is necessary, the problem of map bias is very serious. 
Automatic cycles of FLSQ refinement using all 
reflections had reduced the R value to 34.8, and this 
partially refined model was used as a starting point for 
MLKF. 

At this point 5% of reflections were assigned as ' free '  
and were used for estimation of the overall likelihood 
parameters. At first the aA weighting was overestimated 

and the initial m was much higher than the (cos A~0), 
indicating the importance of assigning 'free '  reflections 
at the beginning of refinement. R E F M A C  was able to 
refine the FLSQ model further and the phase error was 
reduced by 6 °. The behaviour of (cos A~0) v e r s u s  

resolution (Fig. 1) shows that during refinement the 
phases for the high-resolution data were improved most, 
and m and (cos Ag) converged. 

0 0 

0 

(a) 

C7' 

(b) 

(c) 

Fig. 2. Cytochrome c': electron 
densities calculated after FLSQ 
and MLKF. (a) 2F ° - F  c map, 
(b) SIGMAA map and (c) 
REFMAC map. Bold lines show 
final coordinates, thin lines show 
coordinates included in refine- 
ment. 
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It is interesting to inspect the maps (Fig. 2) which 
were available for correcting the model. These illustrate 
a section where the initial model was completely wrong. 
The (2F ° - F c) map (Fig. 2a) and (3F ° - 2F c) map (not 
shown) based on the FLSQ model are seriously biased 
and noisy and it would be easy to trace the chain 
perpendicular to its true direction. The SIGMAA maps 
for the initial FLSQ model (Fig. 2b) correlated with the 
final F c model map better but still there is a break in the 
main chain and the electron density could be interpreted 
wrongly. The map after REFMA C had a map correlation 
coefficient 5% higher than that for the map calculated 
by SIGMAA coefficients, showed less ambiguous 
connectivity, and density for side chains and water 
molecules had appeared (Fig. 2c). 

6.3. Cross-linked insulin. End stages of refinement 
when FLSQ has apparently converged 

This structure is not yet submitted but refinement is 
virtually complete (Edwards, personal communication). 
The solution for this cross-linked insulin was found by 
molecular replacement using a model with 95% 
homology. Least-squares refinement and rebuilding 
cycles had given an R value of 24% and free R value 
34%. Maximum-likelihood refinement using REFMAC 
reduced the R value by 4 % but the free R value dropped 

even more - by 6% (Table 2c). The geometric 
parameters such as root-mean-square deviation of 
bond lengths from ideality also improved. The maps 
using REFMA C coefficients showed regions where there 
were multiple conformations (Fig. 3), and a serious 
error in interpretation at the C terminus of one chain. 
After rebuilding and further refinement by REFMAC the 
R value was reduced to 18% and free R value to 25%. 
The plot of R value versus resolution (Fig. 4) again 
shows that there is more improvement at high resolution 
than at low resolution. 

6.4. Oligopeptide binding protein (OppA). Refinement 
of  heavy atoms estimating error terms in different ways 

OppA is co-crystallized with up to eight uranium ions 
and these pose special problems for refinement 
procedures. (Tame et al., 1994). Several different 
liganded forms have been refined and one of these 
structures was used as a.starting model for this form 
which diffracted to 1.2 A. The refinement by FLSQ 
converged at the worryingly high R value of 22.2 % with 
R free at 24.5%, probably because of problems in 
modelling the U atoms (Table 3). The first application 
of MLKF assuming that all atoms have same expected 
errors (14 and 15) reduced the R value and R free to 
21.3 and 23.5 %, respectively. (Adding H atoms in their 

(a) 

(b) 

Fig. 3. Insulin: electron density 
corresponding to ArgB22 (a) 
before REFMAC; (b) after 
REFMAC. Thin lines show coor- 
dinates included in refinement, 
thick lines show coordinates of 
corrected model. 
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riding positions improved R value and R free to 20.8 % 
and 23.1%.) After allowing the U atoms and the light 
atoms to have different expected coordinate errors (14), 
the R value and R free dropped further to 19.9 and 
22.1%, respectively. Further refinement of this protein 
including anisotropic B factors is under way. 

7. Conclusions and future perspectives 

The equations and techniques described here give a 
foundation for using maximum likelihood in many 
ways. The program REFMAC has been coded to allow 
modular development and results using (14) are very 
encouraging; the test cases show that results derived 
using the maximum-likelihood implementation in the 
program REFMAC are consistently better than those 
derived using least squares. 

1.000-- 

0.800 

0.600 

0.400 

0.200 

0.000 [ 
~ ' ' ' I ' ' ' I . - ' - -  T ~ "  ~ '  U ' - - ~ - -  

0.000 0.050 0.100 0.150 0.200 0.250 

Resolution (A) 
(a) 

1.000 --[ 

0.800 - 

0.600 

0.400 - 

0.200 - 

0.000 
1 . . . .  I ' 

0.000 0.050 

' I . . . .  1 . . . .  I . . . .  I ' ' 

0.100 0.150 0.200 0.250 

Resolution (A) 
(b) 

Fig. 4. Insulin: behaviour of R value and R free versus resolution (a) 
before and (b) after R E F M A C .  Bold lines show R value, thin lines 
show R free. 

Table 3. OppA: treatment of heavy atoms 

FLSQ, least-squares refinement; MLKFI ,  maximum-likelihood 
refinement assuming all atoms have same expected errors; MLKF2,  
same as MLKF1 with H atoms added in their riding positions; 
MLKF3,  maximum-likelihood refinement assuming light atoms and 
each of  the eight U atoms have different expected errors. Atomic 
parameters of U atoms were not refined. 

FLSQ MLKF 1 MLKF2 MLKF3 
R value (%) 22.1 21.3 20.8 19.9 
R free (%) 24.5 23.5 23.1 22.1 

Partitioning structure factors allows us to assign 
different expected errors to each component. The 
approximations used to estimate the coefficients of 
Ewe seem sufficiently robust to give satisfactory 
answers. This should allow a more flexible approach 
to refinement of macromolecular structure, where the 
quality of diffraction from different parts can vary a 
great deal. Proteins which incorporate metal ions lend 
themselves to this approach. Another unsolved problem 
is that of the contribution to the structure factor from 
bulk solvent. The scaling technique used by Tronrud 
only improves the agreement between structure-factor 
amplitudes and does not change the phases. If a better 
modelling procedure for the bulk solvent or for a 
missing part of the structure can be devised, these 
contributions can be added to the structure factor, and 
weighted appropriately, although for doing this (9) may 
need to be modified. 

Incorporating experimental CrFo seems to improve the 
course of the refinement, provided the experimental 
values are realistic. More work needs to be carried out 
in this area and the findings fed back into data- 
processing packages. The conversion of trio to o'Fo 
may also be a source of error. The implementation of 
intensity-based likelihood and its least-squares 
approximation (Appendix C) will allow the optimal 
use of experimental uncertainties for weak 
reflections. 

One more approximation which might cause 
problems is the normalization procedure used to derive 
cra. The calculation of an appropriate normalization 
factor is a tricky problem for many macromolecular 
techniques, such as direct methods and density mod- 
ification. It may be better to work with structure factors 
on the absolute scale for refinement. 

If phase information is available with reliable 
probability distributions, (9) could be used. Using this 
phase information should improve the reliability of 
derived coordinates. At the same time the map 
coefficients calculated within REFMAC would combine 
experimental and model phases. 

A further extension to the program will allow the 
derivation of standard uncertainties of the atomic 
parameters. For this it is necessary to generate the 
non-diagonal terms of the second derivative matrix (see 
Appendix B). 
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APPENDIX A 
Derivatives of -log-likelihood with respect to 

parameters. Estimation of a A 

These appendices are included to help any programmers 
who may wish to develop the technique further. 

A1. Chain rule 

Most estimation procedures can be treated as the 
minimization of some function with respect to para- 
meters and most minimization procedures use the first 
and second derivatives of the function with respect to 
these parameters. Before giving details of derivatives of 
-log-likelihood it is useful to introduce the chain rule 
for the relevant function type. Most crystallographic 
residuals to date have the form, 

f = ~-]~f(A h, B h , Eh) = ~-'~ffh, (21) 
h h 

where Ah, B h are the real and imaginary parts of the 
structure factor, )-]~h is 'uncertainty'. Note that summa- 
tion is over all reciprocal space. For example in (17) 
X h = 2rre 2 + rrA:wc = 2rre 2 + e(1 - ~ a];j). For LSQ 
residuals E h is assumed to be known and is not refined. 

This functional form is needed for the fast calculation 
of the second derivatives. Assume all parameters to be 
estimated are within Ah, B h o r  E h. Then using the chain 
rule, for the first derivatives, 

Of Of OA h Of OB h Of OE h 
-~p = ~ O A--~h ~p + - -  - - + - -  - - '  (22) OB h Op O]~ h 3,o 

and for the second derivatives, assuming that 
02f /OAhOBh = ozf /OBhOAh and so on, 

OPiOpj + - - + -  OBh OpiOp; 3Zh OpiOPjJ 

02f OAh OAh 02f 3Bh 3Bh 
"-~ Z 0tt 2 ap e ~ "4-on'--~h Op i Opj 

02f 3E h tOE h + - -  
Opi Opj 

OB h + :: o., _oA A 
OAhOB~ \ Opi Opj + Opi opj j 

OZhOA, t OPi ~ +--~Pj -~Pi) 

OEh 7 
oz os  \ 0p, apj + 0pj 0p, ) " 

(23) 

This equation is general and can be applied to any 
function of the form (21) and for any parameters. Here 
we give its application for o" A estimation (17). 

A2. Derivatives of-log-likelihood 

Derivatives of the -log-likelihood function when 
there is no phase information with respect to E have 
been given by Bricogne & Gilmore (1990). The 
derivatives of normalized -likelihood (again without 
phase information) with respect to o- A when they are to 
be estimated in reciprocal-space resolution shells have 
been given by Read (1986). Here, we give derivatives 
of -log-likelihood in general form. In the following 
discussion only the acentric case is considered. The 
centric case can be derived by analogy. For simplicity 
Miller indices will be dropped. It is useful to rewrite the 
normalized version of (13-14) in the form, 

iEOl2 + iEwcl 2 27r 
LLK = log IE + ~ Z - log ,/" P(~o) 

0 

× exp2lE°l Ae:w~ cosq9 + Be.wc sin • qgd~0, (24) 
E 

where E = 2cr2:e -)- 8(1 - O'2c) and Ae:wc and BE:w~ are 
the real and imaginary parts of the weighted normalized 
structure factors Ewc. For convenience we use the 
following notation: if t(~o) is a function of ~o and 79(q9) is 
the distribution of ~0 then (t((p))v(~) = fo t(~o)P(~0)&p. If 
a prior distribution of phases is known 7~(~0) will be 
replaced by prior. In the above equation P(~o) is the 
prior distribution, 

Ae:wc cos ~p + BF.:w~ sin ~o 
P(~o) exp 21E°I 

E 
'P(q3) = 2rr 

.f P(~o)exp 21E°I Ae:wc cos ~o + Be.wc sin -, qgd~o, 
o Z 

(25) 

is the posterior distribution of phases, taking into 
account the prior distribution and the calculated phase 
of Ewe. 

Only derivatives involving Ae:wc are considered. 
Those involving Be:wc can be obtained by simple 
replacement of Ae:wc by BE:wc. Now using the facts 
that 31og[y(x)]/Ox=[Oy(x)/Ox]/y(x), IEwcl 2 = AZvc + BZc 
and changing the order of integration and differentiation 
we have [the subscript 7~(~0) will be dropped for brevity 
in some equations], 

0LLK _ 2[AF.:wc -- IE°l(cos ~o)v(¢)] (26) 

0Ae:wc Z 

02LLK 2 41E°l 2 
2 - -  ~ 2  

0Ag;wc 
- -  [(cos 2 ~o)p(~) - (cos ~o)~(~1] (27) 

02LLK 41EOl 2 

3BE:wcOAe:wc Z 2 
- -  ((sin~pcos~p) - (sin qg)(cos<p)) 

(28) 
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0LLK 1 

0E E 

[[E°le + JEwel e - 2 [ E  ° (Ae.we(COS 99) + Be:we(Sin 99))] 
Ee 

(29) 

~ L L K  

OEOAE:wc 

2(Ae:we - IE°l (cos (#9)) 
Ee 

41E°[ 2 Me ((cos 2 + ~ t e:we (#9) -- (COS 99)2) 

+ Ae:weBe:wc((sin (#9 cos (#9) - (sin (#9)(cos (#9))]. 

(30) 

02LLK 1 
3 E  2 E 2 

2[IE o 1 2 + lee[ e - 2lE°l(AE:wc (COS (#9) +BE:we (sin (#9))] 
+ E3 

4leo[ 2 
~-']4 [AeE;wc((COS 2 (#9) --  (COS 99) 2) 

+ 2Ae:wcBe:wc((sin 99cos (#9) - (sin (#9)(cos (#9)) 

+ B~:wc((Sine 99)-  (sin 99)e)]. (31) 

For - log-l ikelihood the singularity of derivatives o f f  
with respect to A, B when FC---~ 0 which is 
characteristic for FLSQ, does not arise. For FLSQ it 
is assumed that (cos 99) is identical to cos 99c which is 
undetermined when F c is zero. It can be verified that 
when F c ---> 0 then (cos 99) ~ (cos 99)prior" When no 
prior phase information is available (COS 99)prior --- 0 .  
This is also true for (sin 99), (cos 299) and (sin 299). 

To calculate derivatives one needs to have the form of 
(cos 99) and the other terms. Let us denote 
mcomb --- ((C0S99)2 + (sin 99)2)1/2, 99comb as combination 
of calculated and prior phases, 

(COS (#99) : mcomb COS 99comb (32) 

(sin 99) = mcomb sin 99comb (33) 

(COS 2 99) -- (COS 99)2 __ 
1 + (cos 299) 2 

-- mcomb COS2 99comb 

(34) 

(sin e 99) - (sin (#9) 2 = 
1 - (cos 299) 

2 sin2 99comb --  mcomb 

(35) 

(sin 99 cos 99) - (sin 99) (cos 99) 

(sin 299) 
2 sin 99comb COS 99comb" (36) mcomb 

For the uniform phase information mcomb and 99comb 
should be replaced by m c and 99c. In this case equations 
(32)-(36) can be simplified further. 

To set up the Newton-Raphson equations used to 
estimate the parameters crAj.0 and Cj: o the first 
derivatives of Ae:wc, Be:we and E must be calculated 
with respect to the parameters to be refined. 
Ae:we = ~-~j aA:jAej and Be:we : ~-~j CrA;jBE: j. For 
simplicity we give the results for (TA; j = 

crAd,0 exp -- Cj:0lsl2/4. 

~hw c 
0aAJ:0 - Ae: j exp -(Cj.01sl 2/4)  (37) 

OAwe Isl 2 
0Cj. 0 - 4 Ae:FAJ'° exp-(Cj:01sle/4) (38) 

0E 
- -  -- 2ecraj,0exp--(2Cj:01sle/4) (39) 
O(TA;j.O 

OX Is[ 2 
OCj, ° - e - f  ~ j , o  exp -(2Cj:olsl2 /4).  (40) 

Substituting the partial derivatives given in (26)-(31) 
into (23) it is seen that the terms involving the first 
derivatives of f with respect to AE:wc, Be:we and E 
become small as the gradient tends to zero and at the 
end stages of refinement will be much smaller than 
terms involving second derivatives. In the early stages 
of minimisation they might be large enough to make the 
second derivative matrix non-positive definite and so by 
analogy with the normal equation construction (Press et 
al. ,  1986) we will drop these terms. The second 
derivatives can be simplified even more, but the 
equations given here are easily programmable. 

Changing the residual would lead to different 
equations (26-31) and changing the parametric 
representation would lead to different equations 
(37)-(40). 

APPENDIX B 
Derivatives of -log-likelihood with respect to atomic 

parameters 

Beginning with Agarwal (1978) various authors (Agar- 
wal, Lifschitz & Dodson, 1980; Lunin & Urzhumtzev, 
1985; Tronrud et al. ,  1987; Briinger, 1989; Bricogne, 
1993) showed how to calculate gradients using fast 
Fourier transformation and convolution of the differ- 
ence map and atomic density. Here we restate these 
results in a form which is convenient and general for 
most residuals. 

Before giving equations of derivatives let us define 
the notations, p is the atomic electron density expressed 
as a sum of Gaussians. Pnm is convolution of atoms n 
and m (P'nm centred at r ~ - r  m a n d  P'nm centred at 
r n +rm). For derivation of equations we use the 
following properties of the structure factors, 
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gatom 
Fh = Ah + iBh = ~ [fn exp(2rcirnhi)] 

n=l 
F~ -- F_ h 

Fh + F;, 
Ah--  2 

-- 

Bh -- 2i 

F h +F_ h 
- - - - - T - -  

Fh -- F_h 
_ 2 1 - - - [ - - _  B_ h 

(41) 

Ox.iOx.j 

(47) 

Now assume r, = (x,, 1 , Xn2 , Xn3 ) and f,, are the coordinate 
and form factor of the nth atom and h = (h 1, h 2, h3 )  is 
the Miller index of the reflecting plane• Here we write 
derivatives for coordinates• Writing the equation 
derived in Appendix A for reciprocal space: remember 
Of /OA h = Of /OA_ h and Of /OB h =-Of /OB_ h. 

O_~m. = }_~ (O_~h iO_Bh)2rrihi f ,  exp(2rrir, (42) 

ozf _ 3,m~-~ (O-~h-i OO~h)(2rc)Zhihfrf, exp(27rir, h) 
Ox, i OXmj 

+ ~ - ~  1 ( 02f O-~h2 + ~--~h 2 ozf)(27r)2hihjfnfm 

× exp[2rcih( G - rm) ] 
1 

OBZh 2i OAh OBh ) 

× (2zr)2hi h~ f~ fm exp[Zzrih(G + rm)] (43) 

= Ho(xm, Xmj ) -}- Hl(xm, Xmj ) -Jr- H2(x,i, Xmj). 

The first derivative can be written in terms of a 
convolution of Fourier syntheses as, 

Of = 2 . (  Of Of)  Op,, (44) 
Ox m -~h + i-O-~h * Ox, i " 

First write diagonal terms in reciprocal space (only H l 
will be written as H 2 and H 0 are smaller than H 1), 

1 ( ~2f ~_~f2~ (2g)2hi hj f2. (45) H1 (Xni, Xnj) = ff E ~ + OBh/ 

Agarwal (1978) discussed the fast calculation of these 
terms for FLSQ and the same approach can be applied 
here. 

Fast Fourier methods are needed to calculate the non- 
diagonal terms. The equations necessary for this are (H 0 
will be dropped from consideration for the reason 
described in Appendix A), 

ffl ,,_. /_ f -~h~2 f l/ ~2" D'nm 
Hi (Xni' Xmj) : J" ~-~h -~- * (46) 

OXniOXnj 
l ( 32f O2f o2f ) OZ p:m 

Hz(x,i, Xmj) = - ~ U -~h OB~ + i2 ~ * 

For terms close to the diagonal which involve atoms 
close to each other, the contribution of H 1 will be much 
larger than that of/-/2. 

So far, the form of the function to be used has not 
been given• The coefficients for the -log-likelihood 
function assuming that aA's are already estimated and 
will be held fixed (again only given for acentric 
reflections). 

Of + i of--~_ = 2 era IEcl exp(iqgc) - mc°mb lEo I exp(itPcomb) 
0,4 h "OB h E h 

aA X - -  (48) (Xc) 1/2" 

This function has the same symmetry as the original 
space group. 

These coefficients resemble those given by Read 
(1986) to reduce map bias. However, since the a A are 
estimated using reflections excluded from the refine- 
ment a less biased map at any stage of refinement is 
obtained. This was found to be so in our test cases. 

For the second derivative map (we give only for 
coefficients for HI), 

0 2 f O 2 f [  441E°12  2 1  °'~ (49) 
O-~h+~hh : E-5 (1--  mcomb) E,. " 

This function has the same symmetry as the Patterson 
function of the original space group. 

A P P E N D I X  C 
M o m e n t s  o f  c o n d i t i o n a l  d i s t r i b u t i o n  

For a probability distribution P(F1;F2) the moments of 
function T(F1) can be written as, 

(T(F1)) = .]" T(FI)P(F1; F2)dFx. 
all values of F, 

In our case IFI > 0 and the probability distribution of 
interest is a modified version of the Rice distribution. If 
phase information is available the analytical expression 
for moments is difficult to derive. Rice (1954) gave 
(]F]") for acentric reflections• Pannu & Read (1996) 
give first and second moments for acentric and centric 
reflections and use them to build a Gaussian approxima- 
tion to the conditional distribution of amplitudes of the 
structure factors. Using Rice's and generalizing Pannu 
and Read's results then (here experimental uncertainties 
are ignored), 

(IFl') - 

( ( E w j F ( ~ +  1)1El \ - - ~ ;  1" "--~wc--/ acentric 

11/22E ~F n + 1 L ~ ;  ½; [Fwcl2'~ 
[ ( ~ )  ( w c )  ( ~ ) 1 F '  k ,  -2-E-~jcentric" 
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~Fl(a; b; c) is known as a confluent hypergeometric 
function or Kummer ' s  function [for properties of these 
functions see Wang & Guo (1989); Rice (1954)]. 
Moments of even order of amplitudes of structure 
factors (consequently' moments of intensities) are 
polynomials of IFwcl" and Ewe. Moments of second 
and fourth order are interesting as they give the first and 
second moments of intensities, 

(1) = (IFI 2) = IFwcl 2 4- Ewc acentric and centric, 

and 

(12) = (IFI 4) = 

IFwcl +41Fwcl2Ewc 4- 2(Ewc) 2 acentric 

IFwcl 4 4- 61Fwcl2Ewc 4- 3(Ewe) 2 centric. 

These moments could be used to build a Gaussian 
approximation for conditional distribution of 
intensities. 
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